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1. Introduction 

During the last decade interest in data assimilation for the atmosphere 

and oceans has increased. This interest can be attributed to the increase in 

the number and accurancy of data available. In meteorology many methods have 

been used for data assimilation; variational, statistical, and empirical 

(Bengtsson et al., 1981; Ghil, 1988). A particularly promising method, widely 

used in engineering, has been applied to numerical weather prediction by 

Ghil et al. (1981). This method, Kalman (19601, provides the best procedure 

for sequentially assimilating data into a dynamic model, under a set of rea- 

sonable assumptions (Jazwinski, 1970; Gelb 1974; Ghil, 1988). 

In the study of Ghil et al. (19811, further refined by Cohn (1982), 

the model atmosphere was governed by a one-dimensional set of shallow-water 

equations. This model includes some interesting features of the large-scale 

atmospheric and oceanic system, in particular the two time-scale behavior of 

slow Rossby waves and fast Poincar; waves (Pedlosky, 1987; Ghil and Childress, 

1987). In order for the sequential filter to provide an estimate of the slowly- 

evolving state of the system, the gain matrix was multiplied by a projection 

matrix onto the slow-wave subspace, giving rise to a modification of the stand- 

ard Kalman filter. This modification is fairly general and does not depend on 

the model atmosphere being considered, but it might be too complicated to be 

applied to an operational numerical weather prediction model. A comparison 

between the operational procedures of optimal interpolation (Of) and the mo- 

dified Kalman filter was made. Cohn (1982) showed the advantages of the latter 

and suggested how to improve the 01 procedure so as to perform almost as well 

as the modified Kalman filter. A summary of this improved 01 is given in Cohn 
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er a l .  (1981). 

A more r e a l i s t i c  model was studied by P a r r i s h  and Cohn (1985). They 

cczs idered  a two-dimensional ( 2 - D ) ,  s i n g l e  l a y e r  shallow-water m o d e l  on an 

f-plane and showed t h a t  t h e  Kalman f i l t e r  can be implemented i n  two dimensions. 

Tke r e s u l t s  f o r  t h e  f o r e c a s t  e r r o r  co r re l a t ions  a r e  markedly d i f f e r e n t  from 

those  obtained by 01, leading  t o  a very d i f f e r e n t  weighting of observat ions.  

P a r r i s h  and Cohn (1985) used an ingenuous idea t o  make t h e  implementation 

of t h e  f i l t e r  f e a s i b l e  for  a system of flow equat ions.  I n  what follows, w e  use 

t h e i r  a lgori thm f o r  an even m o r e  realist ic model, i. e., w e  cons ider  a t w o -  

l aye r ,  2-D shallow-water model on a be ta  plane.  

Two-layer shallow-water models have been widely used f o r  d i f f e r e n t  

p u r p o s e s .  Takacs (19861, considered such a model on t h e  sphere i n  order t o  

compare its r e s u l t s  with those  of t h e  Goddard Laboratory fo r  Atmospheres (GLA) 

f o u r t h  order General C i r c u l a t i o n  Model, and better understand t h e  l a t t e r .  

S in ton  and Mechoso (19841, s t u d i e d  t h e  nonl inear  evolu t ion  of f r o n t a l  waves 

w i t h  a s i m i l a r  model. 

The main f e a t u r e  of t h i s  model which i n t e r e s t s  us  is its a b i l i t y  t o  exhibit 

b a r o c l i n i c  i n s t a b i l i t y .  This  proper ty  was s tud ied  by Pedlosky (1963) 8 who gave 

i n s t a b i l i t y  condi t ions.  The performance of t h e  Kalman f i l t e r  i n  t h e  presence 

of numerical i n s t a b i l i t y  i n  t h e  barotropic v o r t i c i t y  equat ion w a s  s t u d i e d  by 

Miller (1986). T h e  main question t o  be answered here  i s  weather t h e  f i l t e r  a l -  

l c w s  s u f f i c i e n t l y  accu ra t e  t r a c k i n g  of t h e  atmospheric s ta te  i n  t h e  presence 

of rapid ba roc l in i c  developments. 
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2 .  N o d e l  Description 

The atmosphere is t r e a t e d  as a system w i t h  two shallow l aye r s  of inviscid,  

cons tan t -dens i ty  immiscible f l u i d s .  In  t h e  2-D case  t h e  equat ions for such a 

sys tem a re ,  

(2. l a )  

for ksl ,  2. t h e  upper and l o w e r  l ayers ,  respect ively:  is t h e  ve loc i ty  

vec to r ,  0 ,  is t h e  geopotent ia l ,  f is the Coriol is  parameter and the  a's a r e  

cons t an t s ,  al=l,  a2= p,/p2, where p is dens i ty .  

These equat ions can now be l i nea r i zed  about a b a s i c  state i n  which 

t h e r e  i s  no wind i n  t h e  y-direction, i. e., V k r  0, and t h e  wind i n  t h e  

x -d i r ec t ion  is given by Uk= 4 ( y ) ,  for each l aye r .  On a beta plane a t  

4S0N, t h e  2-D equat ions (2.1) a r e  given e x p l i c i t l y  by, 

(2.2b) 



where x and y point eastward and northward, respectively,  while U,, v, and 0,  

are the  perturbation f i e l d s .  

U I O  a 1 0  0 1 

0 U l O  0 0 0 

A =  $ , O  U l O  0 0 

0 0 0 0 y o  
0 0 0 0 , o  y 

0 0 a 2 U , 0  1 

In order t o  w r i t e  System (2 .2)  i n  a vector-matrix form one can introduce 

+ the notation W f ( U 1 ,  V 1 ,  81 , Ut,  V 2 ,  )T and then, 

I 

where 4 8 and c are given by 

( 2.3a) 

(2.3b) 

and 



t 

c -  c -  

0 - ( f - u l y )  0 0 0 0 

f 0 0 0  0 0 

0 0 0 0  0 0 

0 0 0 0 ' ( f ' U 2 Y )  0 

0 0 O f  0 0 

0 0 0 0  0 0 

(2.3d) 

To so lve  system (2.3) w e  use t he  Richtmyer two-step version of t h e  Lax- 

k'er.2roff scheme (see Richtmyer and Morton, 1967; G h i l  et a l . ,  1981). The first 

s t e p  to t h e  f in i t e -d i f f e rence  expression f o r  arr, k f &[( i - 1) AX, ( j  - 1) Ay, kAt ) 
(see Appendix C i n  Par r i sh  and Cohn, 1985) a t  an intermediate location, 

for i=1,2* ..., I and j=1,2 ,..., J-1, where 

w i t h  X and Y being the east-west and north-south extents,  r e spec t ive ly .  

T h e  averaging operators px and cl, are given by 

(2.6a) 



and t h e  operator  Lj is  def ined  as  

(2.81 

w i t h  Ax= dl /AX and a,= A I I A y .  

The second s t e p  u s e s  t h e  intermediate  values t o  compute t h e  state var iab les  

a t  t he  next t i m e  l e v e l  

for i = l , Z ,  .. . , I  and j=2,3, .  . . , J-1. Based on (2.91 it is poss ib l e  t o  construct  

t h e  dynamics matr ix  Y, which is needed i n  t h e  Kalman f i l ter  scheme. The bound- 

a r y  condi t ions  can be included i n  t h e  formulation of Y. It is  impottant  t o  

n o t i c e  t h a t ,  i n  order  t o  ob ta in  ba toc l in i c  i n s t a b i l i t y  t h e  free upper surface 

and the i n t e r f a c e  between t h e  two l aye r s  of f l u i d  must have nonzero mean slopes. 

3. The Kalman Filter 

V e r y  good and c l e a r  p re sen ta t ions  of t h e  Kalman f i l t e r i n g  procedure can be 

! 
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found i n  many places:  Jazwinski (19701,  g i v e s  a good mathematical d e s c r i p t i o n  

w h i l e  Gelb (1974) or Brown (19831, a r e  more application-oriented. The Kalman 

f i z t e r  as appl ied t o  numerical weather p r e d i c t i o n  is  presented by Ghil  et  a l .  

(1981). I n  t h i s  sect ion w e  r e c a p i t u l a t e  b r i e f l y  t h e  e s s e n t i a l s .  

Let us consider a d i s c r e t e  l i n e a r  system, given i n  vector notat ion by 

f o r  t h e  discrete times k = 1,2, ..., where  i # t ( k )  is t h e  n-vector repre- 

s e n t i n g  t h e  t r u e  s t a t e  of t h e  system, Y is t h e  nxn dynamics matr ix  and 

g (k )  i s  a random n-vector which is  white i n  t ime and unbiased with co- 

va r i ance  Q ( k )  : 

The symbol E denotes the expectat ion,  t h e  superscr ip t  T denotes  t h e  

t r anspose  and 6,, is t h e  Kronecker delta. 

D i s c r e t e  l i n e a r  observations a re  described by 

where  s ( k )  is  a p-vector of observations,  and H ( k )  is a pxn matr ix  account- 

ing for in te rpola t ions  and f o r  any conversion between observed v a r i a b l e s  

and s t a t e  variables;  go(k) is a random p-vector, unbaised with covariance 

matrix R ( k ) ,  describing observation e r r o r ,  and assumed t o  be uncorrelated with 
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t h e  model e r r o r  bt (k)  : 

(3.4a,b) 

The Kalman f i l ter  fo r  t h e  system described above is t h e  following set of 

equat ions  : 

ef ( k )  = Y(k-l)da (k-1) , 

P f ( k )  = Y(k- l )Pa (k - l )q (k - l )  + Q(k-1) I 

K ( k )  = Pf(k)HT(k)[ H(k)Pf(k)HT(k) + R(k)]’l , 

d a ( k )  d f (k )  + K ( k ) [  do(k) - H(k)df(k)]  , 

(3 .  Sa) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

f o r  k = 1,2#3# ... . The superscr ipts  ” f ”  and “a” s tand  f o r  forecast  

and analyzed quan t i t i e s ,  t h a t  is, q u a n t i t i e s  t h a t  are due simply t o  

the evolu t ion  of t he  physical  system itself and those  dependent on t h e  

observat ions,  repec t ive ly .  K introduced above is the Kahn gain  matrix, 

which r e f e r s  t o  t h e  weight w i t h  which observat ions and fo recas t  are combined 

to g i v e  t h e  f i n a l  r e s u l t ,  and P is  the  e r r o r  covariance matrix, 

P f t a ( k )  = E [ [ df e a (k) -Qt ( k ) ]  [ df a (k) -dt (k)  ] ] . 
f o r  t h e  fo recas t  and analyzed f i e l d s ,  t epec t ive ly .  

(3.6) 
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